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Abstract 
 

Many software development tasks centered on 
training and operations for spaceflight have common 
aspects. Software engineers and researchers working in 
these areas stand to benefit from a software framework 
that can provide frequently used components. 
Preliminary results from the development of such a 
framework are presented in this paper. It is hoped that 
by documenting design patterns and providing reusable 
software components, cost savings can be realized and 
design experience can be captured. Components in the 
framework are grouped into four major areas: 
Information Management, Visualization, Simulation and 
Decision Making, and Real-time Data. An example is 
presented of the framework being applied to address 
remote training challenges at the NASA Space Station 
Training Facility.  
 
 
1. Introduction  

 
An important part of current and future space 

missions is increasing the ease and reducing the cost of 
training and operations. For example, astronauts should 
be able to participate in useful training while at remote 
locations. That is, a particular crew may have members 
on assignment at the NASA Johnson Space Center in 
Houston and at Star City, Russia. Without having to 

                                                
This paper is in part authored by employees of the U.S Government and is 
in the public domain.  The views and conclusions contained herein are 
those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed or 
implied, of the U.S. Government. 

physically bring the crew together, they should be able to 
engage in meaningful collaborative training sessions. In 
the operational realm, ground controllers should be able 
to easily visualize the current, future, and past 
configurations of a space platform and be able to rapidly 
gain complete information about onboard systems. 

Delivering these kinds of capabilities at a reasonable 
cost is a challenge. However, the risk reductions and cost 
savings derived from more efficient training and 
operations will help offset the development and 
maintenance outlays for hardware and software systems. 
Software costs in particular can be vexing—software 
developed to meet a training or operational requirement 
may be difficult to reuse to solve a new challenge. The 
software profession as a whole has recognized the 
problem of efficient code reuse and has responded with 
research and development into various toolkits, 
frameworks, and design patterns [1-4]. 

This paper describes preliminary results for a software 
framework and prototype application being developed at 
the NASA Ames Research Center by the Smart Systems 
Research Laboratory. The goal of the effort, referred to as 
the Intelligent Virtual Station (IVS), is to provide a 
software framework flexible and powerful enough to 
support the training and operational needs of a wide 
variety of space missions. A software framework is 
defined to be a reusable collection of classes and designs 
cooperating to meet the challenges of an application area. 
The principal users of the IVS framework would be 
software developers and researchers working in the area 
of spaceflight. It will be used to develop applications of 
direct use to those involved in operations and training. 

The work presented here has thus far been restricted 
to dealing with training and operational problems related 
to the International Space Station (ISS) [5]. The ISS is a 



large and complex international effort that poses a 
variety of information technology challenges. Prototype 
application development targeted at the ISS is being done 
to exercise, validate, and provide feedback to the design 
of the framework before broadening it to include other 
space missions such as the Space Shuttle Program, 
Strategic Launch Initiative, and other future space 
platforms. 

 
2. Framework Overview 

 
Several information technology disciplines are 

involved in advancing the state-of-the-art in training and 
operations. These include areas such as visualization, 
information management, simulation and decision 
making tools, and real-time data. For many training and 
operations scenarios, individual users will continue to 
make use of these IT disciplines via conventional 
computer interfaces: a monitor, keyboard, mouse, and 
client-side processing capability. Other interfaces, such 
as head-mounted devices and projection displays, are 
seeing increased use, although their cost and relative lack 
of portability decrease their usefulness in some situations 
(e.g., remote training). 

Delivering these IT disciplines to users poses a 
challenge for software engineers and researchers. Since 
training and operations applications have many aspects 
in common, reinventing capabilities would waste time 
and money. This is particularly true of software used for 
spaceflight projects. Components must be rigorously 
designed and exhaustively tested; those that present a UI 
must adhere to set styles. All these factors contribute to 
higher costs. 

As an example, a software engineer might be faced 
with designing the client-side components of an 
operations application to be used by ground controllers to 
monitor the performance of a particular spacecraft. To 
meet the requirements, the engineer would like to present 
users with a detailed virtual environment (VE) of the 
spacecraft. The VE will be used by ground controllers to 
monitor the real-time state of a critical set of onboard 
systems, and users will interact with the application via 
the conventional computer interfaces previously 
described. The engineer looks to reuse the VE and real-
time data access components to meet the requirements. A 
second engineer, designing a second operations 
application, may hope to reuse only the real-time data 
access component. 

Both engineers would likely be aided by an 
environment as outlined in the UML [6, 7] diagram 
shown in Figure 1. Client-side components 
encompassing the desired features are available for use. 
These components might be available in different formats 

(e.g., JAR files or .NET assemblies) and include 
documentation of their public interfaces, design, and any 
design patterns they employ. The client-side components 
in turn interface with server-side resources (e.g., 
databases, real-time data servers, session managers for 
collaborative VEs, etc.) using a variety of communication 
protocols. Note that while Figure 1 shows only a single 
client per application, in fact the same application may 
run on many cooperating and interacting clients. 

 

 
Figure 1. High-level view of the IVS framework. 

 
It is reasonable to ask whether a special framework for 

training and operations is necessary, especially in light of 
the many toolkits that already exist (such as OpenGL [8-
10] and DirectX [11] for 3D graphics, and the Java API 
[12] and the .NET Framework Class Library [13-15] for 
general software development). First-hand experience 
with a variety of different NASA teams suggests there is 
in fact a strong need for such a framework, one that 
builds upon the aforementioned toolkits. Its existence 
would not only result in significant cost savings for 
NASA but also promote knowledge capture through the 
publication of design patterns common to spaceflight 
training and operations. 

Experience and iteration have suggested a grouping of 
components in the framework as shown in Figure 2:  

1. Information Management; 
2. Visualization; 
3. Simulation and Decision Making; 
4. Real-time Data. 

Attention is restricted to the client-side components as 
they have been the focus of the work accomplished to 
date. The client-side components of an application would 
deploy some or all of these components. 



 
Figure 2. Client-side subcomponents. 

 
Information Management refers to accessing and 

potentially modifying document-type data: design review 
documents, images, problem reports, procedure 
specifications, test results, etc. Visualization refers to 
VEs of spacecraft and GUI widgets useful for presenting 
data. Simulation and Decision Making includes 
components designed to do trade-off analyses, procedure 
generation, and fault detection and identification. Real-
time Data includes real-time information associated with 
the spacecraft, voice and video data, and security 
mechanisms to guarantee confidentiality. 

In describing the IVS framework, it is equally 
important to point out what it is not—a one-stop-
shopping, complete solution to training and operations 
software development. It is anticipated that factoring out 
common code and design patterns will hopefully generate 
a framework that is useful in many, but not all, settings. 

 
3. Related Work 

 
The notion of looking for design patterns in 

application areas is well established; [1-3] provide good 
introductions to the topic. As for successful software 
frameworks, there are many. Graphics [8-11] and general 
software frameworks [12-15] have already been 
mentioned. Specific to training, Tu et al. [16] have 
looked at the problem of developing a framework to 
handle audio and video in a collaborative setting, while 
Anido et al. [17] have investigated the use of CORBA to 
allow components to communicate in a training 
framework. Some early work on data-driven interactive 
3D graphics applications was done by Ashbaugh et al. 
[27]. 

Virtual environments can be a critical component of 
training and operations software. Representative existing 
toolkits include VESS [18], MASSIVE [19, 20] and 
NPSNET [21, 22]. A recent survey of VEs can be found 
in [23]. Kapolka et al. [4] have investigated using 
component frameworks to allow dynamic extension of 

VEs. Security issues in VEs (which all too often are 
considered late in the design process) have been 
examined by Salles et al. [24].  
 
4. Framework Details 

 
Of the components shown in Figure 2, the ones that 

have been most extensively investigated to date are the 
Information Management and Visualization components. 
Work on the Simulation and Decision Making 
component has been done (e.g., procedure generation) 
but is not presented here; other work has yet to be 
incorporated into the framework [25]. In addition, Real-
time Data services are in the early stages of development. 

The IVS Visualization component provides a reusable 
way to display a 3D VE of a spacecraft. It is currently 
implemented in C++ for Windows clients and builds 
under Visual Studio .NET. It is built on top of the 
OpenGL framework [8-10]. 

      

 
Figure 3. Visualization core classes. 

  
A software designer wishing to present clients with a 

VE would interact with the ObjectManager and Object 
classes shown in Figure 3 (attributes and non-public 
operations have been elided from this design-oriented 
diagram). An application would instruct an 
ObjectManager to load and render a particular collection 
of objects, say a set of selected objects in the spacecraft 
that have real-time telemetry feeds to a ground station. 
The geometry of an Object is specified in a Mesh. This 
allows easy geometry reuse in the event that two or more 
Objects in the scene have identical geometry. 



The current framework makes geometry available for 
components of the ISS. Certain modules have higher 
levels-of-detail than others. All geometry is contained 
within the Visualization component for use client-side by 
the application. 

A non-trivial issue being addressed in the framework 
is the process of repurposing CAD to generate the set of 
graphical models for real-time rendering. With a 
multitude of engineers and contractors designing and 
building the ISS, each designing their segments with 
different CAD packages, the framework is confronted 
with importing CAD from different vendors into the VE 
coherently. Additionally, using the CAD geometry 
without simplification is ill-suited for interactive real-
time rendering. Displaying and rendering very high 
level-of-detail views of a spacecraft such as the ISS is 
unachievable even with state of the art graphics 
hardware, let alone those possessed by even the most 
advanced laptop computers. The process of repurposing 
CAD includes off-line automated polygon reduction 
techniques, converting CAD files into an optimized file-
format for interactive graphical rendering. Current work 
is looking to increase the automation of this pipeline still 
further, reducing the need for manual intervention. 

The design shown in Figure 3 does not intrinsically 
provide an application designer with a technique to 
handle varying scene complexity. This is pertinent to 
complex spacecraft, and the tradeoff is one of scene 
complexity versus rendering frame rate on the client 
machine. To have the broadest possible appeal, the IVS 
Visualization component will look to provide level-of-
detail support in future iterations.    

The Information Management component shown in 
Figure 2 is intended to provide the capability to retrieve 
and modify document-type data (this component has been 
previously discussed and thus will only be summarized 
here; see [26] for further details). Any space program has 
associated with it an overwhelming number of 
documents. This includes design review documents, 
images, procedure specifications, test data and the like. It 
would be impractical to require all types of data to reside 
in a single location—for the ISS, there are many 
international partners and a wide range of types of data. 
ISS onboard inventory information is maintained in one 
database (the Inventory Management System), design 
documents in other repositories (e.g., the Vehicle Master 
Database), problem reports in yet other sources (e.g., the 
Problem Reporting and Corrective Action database), and 
so on. Developers needing access to this information 
would benefit from client-side components that could 
easily query these various sources. The approach taken to 
date in the IVS Information Management component has 
been to copy documents from ISS data sources, 

implement a new schema, then provide a simple query 
facility based on a part identifier. 
 
5. Framework Application: SSTF 

 
Having described the general features of the IVS 

framework, a specific example of its use is now 
presented. The Space Station Training Facility (SSTF), 
located at the NASA Johnson Space Center in Houston, 
Texas, is one of the principal astronaut training facilities 
associated with the ISS. It houses physical mock-ups of 
ISS modules that have a high degree of functional 
accuracy. The mocked-up modules have items like 
caution and warning panels, audio terminal units, and a 
variety of other systems the astronauts actually use when 
onboard to interface with the station. All these systems 
are connected to a hardware and software back-end at 
SSTF that allows real-time simulation of station 
conditions. From a functional point of view, the only 
facility more accurate than SSTF is the actual ISS. 

SSTF had an interest in looking at alternative 
interfaces to some of their training systems, to give 
astronauts the ability to engage in remote training. Users 
at remote locations (for example at Star City, Russia) 
would interact with a portable or desktop computer to 
navigate through a VE of the ISS. Certain objects in the 
VE would be linked to their underlying simulations at 
SSTF. As well, users would be able to retrieve supporting 
documents describing the training procedure they were 
involved in. 

 

 
Figure 4. SSTF use cases. 

  
These requirements could be distilled to three 

principal use cases as shown in Figure 4: accessing 
information, navigating in a VE of the ISS, and 
accessing virtual panels. Two principal classes of users 
exist: astronauts engaged in training and SSTF trainers 
overseeing the training process. 



Virtual panels (VPs) require some elaboration. These 
are 2D GUI widgets that, when properly connected to 
server-side resources at SSTF, provide an interface to 
(and can fully control) a Station component in the 
simulation. As an example, a caution and warning panel 
physically located in the mock-up would have a 
corresponding VP. If a caution was triggered in training, 
the caution light would be visible both in the physical 
mock-up and on any computer at SSTF that had the 
corresponding VP displayed. The caution could be 
acknowledged by physically pressing a button in the 
mock-up or by pressing a button on the VP. VPs are used 
by instructors to monitor training and run sample 
scenarios from their Instructor Operator Stations. They 
are also used to provide a virtual interface to components 
that do not yet physically exist at SSTF. 

 

 
Figure 5. SSTF deployment diagram. 

 
Components from the IVS framework were used as 

shown in Figure 5 to meet the SSTF requirements. Some 
components had to be uniquely developed to interface 
with existing SSTF simulation programs. The client-side 
components were written in C++ and are being deployed 
on portable computers running Windows 2000/XP (a 
typical client having a Pentium 4 1.7 GHz CPU with a 
GeForce 4 440 Go graphics card). A client machine in 
turn communicates with a gateway machine at SSTF 
which handles requests for specific virtual panels. The 
server-side Remote Connection Manager is written in 
Perl (version 5.x). Authentication is handled via a 

combination of passwords and physical security devices. 
Not shown in Figure 5 are the various interactions 
between the gateway machine and the extensive network 
of simulation computers at SSTF. Document-type data 
describing a particular training scenario can be accessed 
either from a Microsoft Access database stored locally on 
the client or from a remote Oracle database. 

Figures 6 and 7 show screen shots of the SSTF 
application. Figure 6 shows a user navigating to obtain 
an exterior view of the ISS (as it will nominally appear 
when station assembly is complete). Figure 7 shows a 
user about to interact with a virtual panel of a Portable 
Computer System (PCS). PCSs are computers that 
astronauts actually use when onboard the ISS to monitor 
and control systems. The virtual PCS has a matching 
user interface; when used, instead of controlled the actual 
ISS, it controls the simulation at SSTF.  

 

 
Figure 6. A screen shot of the SSTF application. 

 

 
Figure 7. A screen shot of the SSTF application 
showing a Portable Computer System in Node 2. 



The net effect of linking the VPs to the virtual 
environment is that users can engage in remote virtual 
training from secure locations. A sense of spatial 
awareness of components is maintained, and the 
complete functionality offered by the VPs is available. 

The application under development for SSTF 
continues to be refined. Improvements are being made to 
some of the server-side components. As well, geometry is 
being added to the VE to accurately model the various 
virtual panels available at SSTF. Lessons learned from its 
development are being fed back into revising and 
updating the IVS framework. The application is currently 
being used at SSTF for demonstration purposes only; 
actual deployment will follow only if the application 
meets or exceeds the high standards SSTF demands of 
training tools.  
 
6. Conclusions and Future Work 

 
Although the IVS framework will continue to mature, 

it has already demonstrated its ability to speed 
application development in different training and 
operations scenarios through component reuse. That said, 
the IVS framework is still preliminary in nature and 
likely needs an additional eighteen months of 
development effort before it can usefully be made 
available to the larger spaceflight community. It seems 
almost certain that frameworks such as the IVS will 
become more common within the spaceflight software 
community within the next decade. 

Another conclusion, and a major lesson drawn from 
this work, is the absolute necessity of working early and 
often with a variety of teams involved in training and 
operations. Their involvement is critical in defining and 
understanding the important details of each application 
area, which in turn increases the likelihood that the 
framework will be effective and useful.  

 Future work will look to expand the Real-time Data 
and Simulation and Decision Making components of the 
framework, providing real-time data from spacecraft 
components as well as securely handling voice and video 
traffic during remote training. The VE components will 
be expanded to include a collaborative component, 
building on the work of NPSNET and others [18-22]. 
The usefulness of including ambient sound in the VE for 
purposes of training will be investigated (the ISS, for 
example, can be a relatively loud environment in which 
to work). Current and future work on the framework is 
increasingly building on Microsoft’s .NET framework 
[13-15]. Finally, the Visualization component will look to 
provide more detailed and varied geometry for the ISS 
and other spacecraft, level-of-detail services appropriate 

for training and operations, and assembly sequence 
support for the ISS. 
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